
Generalizing Learned Policies to Unseen Environments using Meta Strategy
Optimization

Jeremiah Coholich

Abstract

We attempt to reproduce the claims in [9]. The au-
thors train a quadruped robot in simulation to walk forward
with a Deep Reinforcement Learning algorithm called Meta
Strategy Optimization (MSO). By conditioning the learned
policy on a small latent space, the authors are able to adapt
the learned policy to environments that differ significantly
from the training environment, beating other generalization
methods including Domain Randomization. Using MSO, we
are able to achieve a higher reward than DR on the train-
ing environment, but are not able to generalize to the test
environments as well as DR.

1. Introduction
Deep reinforcement learning (DRL) algorithms have

been used to learn behaviors for robots in recent years
[5][7][2][10]. However, these methods are typically
sample-inefficient and require lots of data. Because of this,
policies are usually trained in simulation, since collecting
data on a physical robot is time-consuming and potentially
dangerous given the stochastic nature of many DRL algo-
rithms. However, a policy learned in simulation may not
transfer well to the real robot due to shifts in dynamics,
sensor noise, and other or unknown modeling inaccuracies.
DRL researchers have come up with several methods of en-
abling DRL models trained in simulation to generalize to
other similar environments, including Domain Randomiza-
tion (DR) [5], Strategy Optimization [8], and Meta Strategy
Optimization (MSO), to name a few [9].

In this study, we replicate some of the claims in the paper
Learning Fast with Meta Strategy Optimization by Yu, Tan,
Fai, Coumans, and Ha [9]. In this paper, the authors train a
DRL algorithm called Meta Strategy Optimization on a sim-
ulated Ghost Minitaur quadruped (Fig. 1) with the goal of
teaching it to walk forwards. They then use the same algo-
rithm to adapt the learned policy to numerous test environ-
ments, both simulated and real, which have significant shifts
in physics and robot parameters not seen in training. They
compare the performance of MSO to Domain Randomiza-
tion and Strategy Optimization with a Projected Universal

Figure 1. The Ghost Minitaur training environment (left) and one
of the test environments (right), where the robot must walk up a
slope, which is never encountered during training. Both environ-
ments randomize physics and robot parameters.

Policy (SO-PUP). MSO has the been generalization perfor-
mance.

The key concept behind MSO is conditioning the policy
on a learned latent space, which is optimized for every set
of randomized simulation parameters. Unlike the param-
eterized policy, the latent space is low dimensional (two-
dimensional in our experiments) and can be learned very
quickly, in a few iterations. The latent space is not directly
conditioned on the parameters of the simulation, but found
by freezing the policy parameters and directly optimizing
the latent space to achieve the highest reward in the training
environment. After that, the latent space is frozen and con-
catenated with the observation at every step of during data
collection for policy training.

In contrast, domain randomization learns a regular, flat
policy without any latent variables. The same policy is used
with any set of simulation parameters. The policy must
learn to be robust or invariant to the simulation parameters
that are randomized. Typically, polices learned with domain
randomization are conservative and robust.

To limit the scope of this replication study, we test the
trained policy on only two test environments in simulation
only. We also only compare Meta Strategy Optimization to
Domain Randomization. [9] shows that the DRL algorithms

4321



Parameter Training Extended Randomization
Mass 60% - 160% 45% - 175%
Battery Voltage 10V - 18V 8.8V - 19.2V
Motor Viscous Damping 0 - 0.02 (N-m-s) 0 - 0.026 (N-m-s)
Contact Friction 0.2 - 1.25 0.1 - 1.365
Motor Strength 50% - 150% 35% - 165%
Latency 0 - 80 ms 0 - 100 ms
Robot Link Inertias 25% - 200% 25% - 1.525%

Table 1. Parameter randomization ranges for the training environment and the extended randomization test environment

that are able to adapt to different simulated environments
also adapt the best to the physical robot. Therefore, ensur-
ing that a policy can generalize well in simulation is a good
first step before testing it on a real robot.

2. Approach
PyBullet, a free and open-source physics simulator, was

used to create the quadruped reinforcement learning en-
vironment [1]. All training and test environments were
created by modifying the third-party OpenAI Gym Envi-
ronment ”MinitaurBulletEnv-v0”, whose source code is in-
cluded in the PyBullet repository. The training environment
was designed to match the training environment specified
in [9] as closely as possible. However, we run our training
simulation at 100 Hz instead of 50 Hz, since the PyBul-
let documentation warns that various simulation parameters
will have to be re-tuned if the time step changes from the
default of 0.01 seconds. The first of two test environments
employs extended randomization of simulation parameters,
with a range increase of 30% for all parameters. The ran-
domized parameter ranges are given in table 1. The second
test environment employs the same randomization ranges as
the training environment, but the robot is tasked with walk-
ing up a slope instead of a flat plane (see Fig. 1). The angle
of the slope is sampled uniformly from [5, 15] degrees.

The reward function used the train the quadruped in [9]
is given in Eq. 1

r = clip ((pn − pn−1) · d/dt, −1.0m/s, 1.0m/s) (1)

However, upon review of the reported returns in [9] and the
videos provided by the authors, it seems clear that Eq. 1 has
a mistake, and the reward function in Eq. 2 was actually
used, which is independent of the simulation timestep.

r = clip ((pn − pn−1) · d, −0.02m, 0.02m) (2)

We employ the same reward function as Eq. 2, minus
the clipping, since we are not concerned about the safety
of a physical robot. The returns reported in [9] should be
directly comparable to our returns since we also limit our

episodes to 5 seconds. It is worth noting that summing the
returns of Eq. 2 across all timesteps of an episodes gives the
distance traveled by the robot in meters.

The authors of [9] use derivative-free optimization meth-
ods to find the best latent variables for every environment
instance and to optimize the policy network. However,
these methods are generally known to be slower and less
sample-efficient than derivative-based optimization meth-
ods. Because of this, we used Proximal Policy Optimiza-
tion (PPO) with Adam [3] to optimize the neural network
that parameterizes the policy and value functions (a com-
bined ”actor-critic” network). PPO is a state-of-the-art
DRL algorithm which has shown success in many domains
[6]. A publicly-available PyTorch implementation of PPO
was used and modified for our experiments [4]. We used
the default PPO hyperparameters of the implementation
because they are able achieve a high reward on the un-
modified ”MinitaruBulletEnv-v0” environment. For ease
of implementation, we retained the use of derivative-free
methods for searching the latent space, which is only two-
dimensional. However, we further simplify by searching via
random sampling instead of Bayesian Optimization. Just
like in the MSO paper, we limit the number of episodes to
25 when searching the latent space.

In [9], the MSO training algorithm samples from 5 ran-
domized environment instances per policy update, each
with a unique set of simulation parameters and correspond-
ing learned latent space. However, due to difficulties in
modifying the PPO implementation to support unique par-
allel environments, our training algorithm is limited to only
one randomized environment instance per update. The sim-
ulation parameters are randomized after every update, after
which a new latent space is learned. In our domain random-
ization experiments, 10 environments are trained in parallel
to speed up training. Each environment has its own set of
simulation parameters that are randomized again when an
episode finishes. We train both MSO and DR for 1e6 sam-
ples on eight different random seeds each.

The value of our latent variables during training is con-
fined to [-1.0, 1.0]. During testing, we try MSO with a latent
variable range of [-2.0, 2.0], because we got poor results

4322



Figure 2. Training curves for Domain Randomization and Meta Strategy Optimization. The latter achieves a much higher reward in the
training environment. Each curves is the average of eight random seeds. The shaded background curve represents the standard deviation.

Figure 3. A comparison of the results shown in [9] (left) to the results from our study (right). The error bars represent one standard
deviation. Our returns are calculated using the average of 10 random seeds. Note that vertical axis of the right plot stops at 1.0, although
some returns are much higher.

with the MSO-learned policy on the test environments, as
seen in the following section. We hypothesized that per-
haps the latent variable range needs to be expanded in order
for the agent to perform well on environments with parame-
ters outside of the training ranges. The authors of [9] do not
disclose information about any bounds of the latent space.

3. Results and Discussion
As seen in Fig. 2, the Domain Randomization reward

plateaus at about 0.2 at 200k samples, failing to improve
for the rest of the 800k samples. However, the MSO policy
continues to improve even at 1e6 samples, achieving a re-
ward of about 13.75. As seen in Fig. 4, the DR policy only
learns to take one step forward in the training environment
before falling over and thus triggering the simulation to ter-
minate. The MSO policy learns to quickly run forwards.

We achieve a much higher reward for meta strategy op-
timization than the authors of [9] do. This is only partially
explained by the lack of clipping on the reward function.

The maximum cumulative reward using Eq. 2 for a 5 sec-
ond episode is 5.0. As shown in Fig. 3, [9] fails to even
get within one standard deviation of the maximum reward.
However, our MSO algorithm achieves a reward of 13.85 on
the training environment, which is about 360% higher. Pre-
sumably, using PPO with Adam resulted in better sample
efficiency and faster learning.

However, perhaps our MSO algorithm implementation
achieved superior performance on the training environment
through over-fitting – it performs much worse on the two
test environments and does not beat domain randomization.
MSO with the extended latent space range does better than
MSO, but still not better than Domain Randomization. Ad-
ditionally, perhaps random search is not as effective in find-
ing optimal latent variables as is Bayesian Optimization.

4. Conclusion
We were not able to replicate the Meta Strategy Opti-

mization algorithm’s ability to generalize. However, we did

4323



Figure 4. The two learned policies in the training environment. The DR policy takes one step and falls over. The MSO policy runs very
fast comparatively; the frequency of individual steps is faster than the frame rate. Each tile is one meter squared.

find that it was able to achieve a much higher reward than
Domain Randomization on the randomized training envi-
ronment. However, this is not quite a fair comparison due to
the fact the the MSO policy is allowed to optimize over prior
information (training the latent variables over 25 episodes)
before being evaluated. However, reinforcement learning
is generally very sensitive to hyperparameters and perhaps
a different setting of learning rate, PPO epochs, etc. would
yield results more consistent with [9]. Given our findings so
far, we would not feel it is worth it to implement the MSO
on a real quadruped robot yet.

4324



References

[1] Erwin Coumans and Yunfei Bai. Pybullet, a python mod-
ule for physics simulation for games, robotics and machine
learning. http://pybullet.org, 2016–2019.

[2] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey
Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017 IEEE in-
ternational conference on robotics and automation (ICRA),
pages 3389–3396. IEEE, 2017.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[4] Ilya Kostrikov. Pytorch implementations of reinforce-
ment learning algorithms. https://github.com/
ikostrikov/pytorch-a2c-ppo-acktr-gail,
2018.

[5] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Sim-to-real transfer of robotic control
with dynamics randomization. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 1–8.
IEEE, 2018.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017.

[7] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,
Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent
Vanhoucke. Sim-to-real: Learning agile locomotion for
quadruped robots. arXiv preprint arXiv:1804.10332, 2018.

[8] Wenhao Yu, C Karen Liu, and Greg Turk. Pol-
icy transfer with strategy optimization. arXiv preprint
arXiv:1810.05751, 2018.

[9] Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and
Sehoon Ha. Learning fast adaptation with meta strat-
egy optimization. IEEE Robotics and Automation Letters,
5(2):2950–2957, 2020.

[10] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Up-
croft, and Peter Corke. Towards vision-based deep rein-
forcement learning for robotic motion control. arXiv preprint
arXiv:1511.03791, 2015.

5. Appendix
Hyperparameters used in the PPO algorithm when
training MSO policies:
Number of Parallel Environments: 1
Samples per environment per update: 2048
Learning Rate: 3e-4
Entropy Coefficient: 0.0
Value Loss Coefficient: 0.5
PPO Epochs: 10
MiniBatches: 32
Discount Factor: 0.99
Lambda Parameter for Generalized-Advantage-Estimation:
0.95
Total Training Steps: 1e6
Use Linear Learning Rate Decay: True
Use CUDA: False
Seed: (varied between runs)

Hyperparameters used in the PPO algorithm when
training DR policies:
Number of Parallel Environments: 10
Samples per environment per update: 205
Learning Rate: 3e-4
Entropy Coefficient: 0.0
Value Loss Coefficient: 0.5
PPO Epochs: 10
MiniBatches: 32
Discount Factor: 0.99
Lambda Parameter for Generalized-Advantage-Estimation:
0.95
Total Training Steps: 1e6
Use Linear Learning Rate Decay: True
Use CUDA: False
Seed: (varied between runs)

Run time for training an MSO policy is about 2.5 hours
for DR policies and 7 hours for MSO policies with up to
8 instances running simultaneously on a Ryzen 3700x CPU.

Eight runs were used for training, while 10 runs were used
obtaining the results displayed in Fig. 3.

Pybullet can be installed at the hyperlink in [1].

4325

http://pybullet.org
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

