
Hierarchical Reinforcement Learning and Value
Optimization for Challenging Quadruped

Locomotion
Jeremiah M. Coholich

Institute of Robotics and Intelligent Machine
Georgia Insitute of Technology

Atlanta, GA
jcoholich@gatech.edu

Muhammad Ali Murtaza
Institute of Robotics and Intelligent Machine

Georgia Insitute of Technology
Atlanta, GA

mamurtaza@gatech.edu

Seth Hutchinson
Institute of Robotics and Intelligent Machine

Georgia Insitute of Technology
Atlanta, GA

seth@gatech.edu

Zsolt Kira
Institute of Robotics and Intelligent Machine

Georgia Insitute of Technology
Atlanta, GA

zkira@gatech.edu

Abstract—We propose a novel hierarchical reinforcement
learning framework for quadruped locomotion over challenging
terrains. Our approach incorporates a two-layer hierarchy where
a high-level planner (HLP) selects optimal goals for a low-level
policy (LLP). The LLP is trained using an on-policy actor-critic
RL algorithm and is given footstep placements as goals. The
HLP does not require any additional training or environment
samples, since it operates via an online optimization process over
the value function of the LLP. We demonstrate the benefits of this
framework by comparing it against an end-to-end reinforcement
learning (RL) approach, highlighting improvements in its ability
to achieve higher rewards with fewer collisions across an array
of different terrains.

Index Terms—Robotics, Reinforcement Learning, Optimiza-
tion

I. INTRODUCTION

In recent years, there has been an explosion of interest in
using reinforcement learning (RL) for robotic planning and
control. It is possible to learn robot legged locomotion poli-
cies from scratch in an end-to-end manner [1]–[6]; however,
this is typically challenging and requires extensive reward
function engineering, hyperparameter tuning, or environment
engineering. While RL promises to be a general framework for
robots to autonomously acquire a wide variety of skills, legged
locomotion poses a difficult learning and control problem
due to underactuation and high-dimensional state and action
spaces.

To avoid these issues and increase the success rate of
learning locomotion policies, researchers began to incorporate
various priors into RL algorithms. Most notably, [7] proposes
a gait trajectory generator (TG) and limits the RL policy
to learning residuals which are added to the output of the
TG. This approach was subsequently adopted by many others
[8]–[11] as it greatly improves development time, sample

Fig. 1. Policy architecture incorporating a high-level footstep planner which
makes use of the low-level policy’s value function for selecting high-value
footstep targets.

efficiency, and the success rate of learning locomotion policies.
We use a similar style of trajectory generator in our proposed
approach and our ”end-to-end” reinforcement learning base-
line. Other forms of prior knowledge are feasible as well. For
example, [12] acquires policies by imitating animals directly.
[13] learns a policy that makes corrections to trajectories
generated by an established physics-based planner, while [14],
[15] constrain the learning process to respect physics-based
feasibility criteria.

The hierarchical reinforcement learning approach has also
been used to train bipedal robots in [15], [16]. In [16],
the authors train bipedal robots in simulation to walk on
increasingly difficult stepping-stone sequences. However, their

foot placement strategy is traversing a fixed sequence which
cannot be adapted when many stepping stones are involved.
Similarly, in [15], the authors propose a two-layer hierarchy
for quadrupeds where footstep targets are communicated be-
tween the high-level and low-level. However, they train their
high-level with RL to satisfy a linear program to check for the
feasibility of each robot stance in lieu of simulating physics.

In this work, we learn policies which find optimal foot
placements on terrain with gaps and height variation. In
this domain, legged robots clearly trump wheeled robots,
since legged robots require only small, discrete contacts with
terrain. Planning these contacts, or footstep placements, is
therefore crucial in unlocking the full capability of legged
robots. We posit that biasing our policy architecture focusing
on footstep placements will improve our ability to traverse
such challenging terrain. In addition, the use of a hierarchical
framework provides a modular structure, which accommodates
the swapping of components.

Our method involves a two-layer hierarchy, where footstep
target locations are passed from the high-level policy (HLP)
to the low-level policy (LLP). In this setup, we first train
the LLP to control a simulated quadruped robot to hit a
sequence of randomly generated footstep targets. The HLP
then finds optimal footstep locations by leveraging the value
function obtained during the training of the LLP. Other works
contain similar online optimization approaches. QT-Opt [17] is
a technique for online optimization over a learned Q-function
using the derivative free Cross-Entropy Method. Unlike this
work, we incorporate a hierarchy and include an additional
term in our optimization which makes our architecture more
adaptable. We additional use a combination of derivative-free
and derivate-based optimization methods. [18] uses a very
similar hierarchical approach leveraging a low-level policy’s
value function, but focuses on the offline RL setting where
distribution shift from the offline training data is of significant
concern.

We can summarize the main contribution of this paper as
follows:

• A hierarchical learning-based quadruped control archi-
tecture where the high-level footstep planner is obtained
without requiring any additional training.

• An online value-optimization process for selecting low-
level policy goals, obtained without additional environ-
ment samples beyond low-level policy training.

• Validation of the proposed methodology’s capability to
generalize beyond its training environment, compared
with the end-to-end RL policy, on the task of quadruped
locomotion over rough terrain

The rest of the paper is as follows: section II gives
RL preliminaries and discusses LLP training. Section III
outlines the HLP and its associated action space and re-
ward function. Experiments and results are presented in
section IV, and future work and conclusion are given
in section V. Video results and code are available at:
www.jeremiahcoholich.com/publication/hrl optim/.

II. LOW-LEVEL POLICY TRAINING

The low-level policy (LLP) is a goal-conditioned policy
trained with an on-policy actor-critic method. The training
must produce a policy which can provide low-level actions and
a value function which gives the expected cumulative reward
for a given state and goal.

In our application, the (LLP) is trained given the goal
of hitting a sequenced of procedurally generated randomized
footstep targets. Both the policy and value networks take the
same input consisting of goal footstep target locations and
robot observations.

A. RL Preliminaries

We formulate the low-level task of hitting footstep targets
as a partially-observable Markov decision process, which is a
tuple (S,O, A, p, r, ρ0, γ). Here S is the set of environment
states, O is a set of observations, A is the set of policy actions,
p : S × A → S is the transition function of the environment,
r : S×A×S → R is the reward function, ρ0 is the distribution
of initial states, and γ is a discount factor. Our goal is to find
an optimal policy π∗ : S → A that maximizes the discounted
sum of future rewards J(π) over time horizon H .

J(π) = E{si,ai}H
0 ∼π, ρ0

[
H∑
t=0

γtr (st,at, st+1)

]
(1)

π∗ = argmax
π

J(π) (2)

We use the proximal policy optimization (PPO) [19] to
solve for π∗, an on-policy actor-critic method, with λ = 0.99.
Additionally, we train a value network to predict the value of
a state given the current policy. The value network is trained
with the mean-squared error loss. We additionally employ
generalized advantage estimation (GAE) [20] to reduce the
variance of value-function updates, stabilizing training.

Vπ (s0) := Eτ∼π

[
r (s0,a0, s1) +

H∑
t=1

γtr (st,at, st+1)

]
(3)

The policy and value networks are parameterized as separate
multilayer perceptrons with two hidden layers of size 128.

B. Action Space

We use the Policies Modulating Trajectory Generators
(PMTG) architecture [7] with the foot trajectories given in [8].
Our 15-dimensional action space consists of trajectory gener-
ator frequency, step length, standing height, and 12 residuals
corresponding to the 3D position of each foot. The trajectory
generator outputs foot positions in the hip-centered frame (as
defined in [8]). These are converted into joint positions with
analytical inverse kinematics and tracked with PD control.
The trajectory generator cycle is synced to a phase variable
ϕt ∈ [0, 2π), where S := [0.25π, 0.75π] ∪ [1.25π, 1.75π]
represents the swing phase of each leg and [0, 2π)/S is the
support phase.

http://www.jeremiahcoholich.com/publication/hrl_optim/

C. Reward Function

The reward function for the LLP encourages hitting footstep
targets and contains additional terms to encourage a reasonable
gait. The reward function terms are as follows:

1) Footstep Target Reward: The Equation below defines
this reward term, where hi,t ∈ {0, 1} indicates whether or not
foot i has hit its footstep target at time t. A target is considered
hit if the foot makes contact with at least 5 N of force in a 7.5
cm radius around the target while the trajectory generator is in
the contact phase for that foot. We define di,t as the distance
in the xy plane from the foot center to the target center. If the
robot hits both active footstep targets at once, the reward for
each foot is added, the total is tripled, and the environment
advances to the next pair of targets. This reward function is
inspired from [16] and is given by

κFT

[
2

∏
i∈N

hi,t + 1

]∑
i∈N

hi,t

[
1 + 0.5

(
1− di,t

dhit

)]
where κFT is the weighting term for the reward function,
hi,t ∈ {0, 1} indicates whether or not foot i has hit its footstep
target at time t, and dhit is the xy distance threshold for
hitting a footstep targets (set to 7.5 cm). N are the pair of
feet that the robot has active targets at a given time t with
N ∈ {{1, 4}, {2, 3}}. The factor

(
2.0

∏
i∈Nhi,t + 1

)
triples

the per-foot rewards if both footstep targets are achieved on
the same timestep.

2) Velocity Towards Target: To provide denser rewards that
encourage hitting footstep targets, we reward foot velocity
towards targets.

κV T

∑
i∈N

ḋi,t

3) Smoothness Reward: To ensure a smooth robot motion,
we added a penalizing term to the norm of second-order finite
differences of the actions.

κS∥at − 2at−1 + at−2∥2

4) Foot Slip Penalty: This term penalizes xy translation
greater than 2 cm of feet that are in contact. ci,t gives the
vertical contact force for foot i at time t in Newtons. xi,t ∈ R2

is the global position in meters on the x-y plane for foot i at
time t.

κSL

∣∣{i : ∥xi,t − xi,t−1∥2 > 0.02, ci,t > 0, ci,t−1 > 0
}∣∣

5) Foot Stay Reward: Trotting gates require only two feet
to have active footstep targets at any time. To prevent the
robot from immediately moving its feet off of footstep targets
after they are hit, we reward the agent for keeping its feet on
previous targets.

κFS

∑
i∈{1,2,3,4}\N

hi,t

[
1 + 0.5 ∗

(
1− di,t

0.075

)]

Fig. 2. Visualization of optimization approach in a 2D slice of the value
function goal-space

6) Collision Penalty: We added a penalty if any robot
linkage collides with other linkage or terrain. The collision
penalty excludes foot collisions with terrain and is given by

−κCg

where g is the number of robot linkages in that have collided
with other linkages or terrain.

7) Trajectory Generator Swing Phase Reward: This term
rewards the trajectory generator for entering the mid-swing
phase, weighted by the frequency of the trajectory generator
(fPMTG). Empirically, we observe that this term is essential for
preventing the learning of a degenerate policy that remains at
the same place and collects maximum rewards for foot stay,
foot slip, and smoothness.

1S{ϕt} fPMTG

where 1{·} is the indicator function.

D. Observation Space

The policy observation is a vector Ot = {x, ẋ, τ, O,
c, p, f , cosϕ, sinϕ, at−1, at−2, F} where x ∈ R12

represents the foot positions in the hip-frame, ẋ ∈ R12 is
the foot velocities, τ ∈ R12 is the joint torques, O ∈ R4

is the IMU data consisting of {θroll, θpitch, θ̇roll, θ̇pitch}, c ∈
{0, 1} ⊂ R4 is a vector giving the contact state of each foot,
p = {p1,x, p1,y, p2,x, p2,y, p3,x, p3,y, p4,x, p4,y} ∈ R8 gives
the x and y distances from each foot to the corresponding to
the next (for i ∈ N) or previous (i /∈ N) footstep targets,
f ∈ {0, 1} ⊂ R4 is a multi-hot encoding of N , ϕ ∈ R is
the phase of the trajectory generator, at−1 and at−2 give the
previous two actions taken by the policy, and F is a scan of
points around each foot.

III. HIGH LEVEL POLICY

The primary purpose of the HLP is to choose a goal, or
footsteps target, for the LLP. No additional samples from the
environment or neural network parameter updates are required
for the HLP, once the LLP is fully trained. The HLP makes
use of the LLP value function, which is typically only used
to guide the policy updates and discarded after RL training.

First, we describe the action space of the HLP and its
objective function. Then, we discuss the online optimization
process used to find optimal actions for the LLP.

A. Action Space

The HLP action space is a continuous 8-dimensional space
that encodes the x and y positions of the next footstep targets
for all four feet of the quadruped, which is the vector p defined
in Section II-D.

AHLP := p ⊂ O

In addition to the current observation ot, the HLP also receives
the robot’s yaw angle, θyaw. This necessary to define a
direction for travel.

B. Objective Function

The objective function of the HLP includes the expected
discounted rewards of the LLP, which is estimated by the LLP
value function, plus an auxiliary objective H. The auxiliary
objective is necessary since simply choosing the highest-value
footstep targets will yield trivial solutions where the robot
steps in place. H is designed to encourage locomotion in a
particular direction and is parameterized by a heading angle
α and a weight κHD. The robot yaw θyaw is used to map the
targets in robot frame to the world frame.

H =
[
cosα sinα

]
Rz(θyaw)

[
pa,x pb,x
pa,y pb,y

] [
1
1

]
(4)

where Rz(θyaw) is a 2D rotation matrix. The objective func-
tion for the HLP at time t is then given in Equation 5. We
would like to solve the optimization problem given in Equation
6.

RHLP := V (st) + κHDH (5)

p∗ = argmax
p

RHLP (6)

The hyperparameter κHD controls the tradeoff between
picking targets that maximize the expected success of the LLP
with picking targets that advance the robot’s movement in
direction α.

Algorithm 1 Grid-Search Initialized Gradient Ascent for HLP
Optimization

1: Input: Low-level policy value function V (st), directional
objective H , grid search bounds B, grid resolution R,
learning rate η, number of gradient ascent iterations N

2: Output: Optimal footstep targets p∗

3: pbest ← 0 ▷ Initialize the best footstep target
4: Rbest ← −∞ ▷ Initialize best reward
5: Pgrid ← GenerateGrid(B,R) ▷ Generate grid points

within bounds
6: ▷ Grid Search Step
7: for p ∈ Pgrid do
8: R← V (st) + κHDH(p) ▷ Evaluate HLP objective

for each p
9: if R > Rbest then

10: pbest ← p
11: Rbest ← R
12: end if
13: end for
14: ▷ Gradient Ascent Step
15: p← pbest ▷ Initialize p with the best grid search result
16: for i = 1 to N do
17: ∇R(p)← ∇p[V (st) + κHDH(p)] ▷ Compute

gradient of HLP objective
18: p← p+ η · ∇R(p) ▷ Update footstep targets using

gradient ascent
19: end for
20: return p

C. Optimization

There are multiple options for solving equation 6, including
gradient-based optimization methods, since both the value
function and H are differentiable with respect to P. We choose
to additionally leverage the small-dimensionality of the P
and maximize the HLP objective function with a grid-search
initialized gradient ascent, the approach shown in Figure 2.
We first discretize the 8-dimensional space of dnext into a box
[−0.15, 0.15]8 with 5 points per axis and query the objective
function at each point. The optimum point of the grid search is
used as the initialization for gradient ascent. The full algorithm
is given in Algorithm 1. In our experiments, we set η = 10−4.

We will next present a lemma for the convergence of the
grid-search initialized gradient ascent.

Lemma III.1. The expected initial error for grid search
initialized gradient ascent is smaller than or equal to the
expected initial error for random initialized gradient descent
i.e

f(x∗)− f(xbest) ≤ Ex0∈rand{P}(f(x
∗)− f(xrand))

where Ex0∈rand{P} denotes the expectation over the random
initialization, xbest is maxx∈G f(x) and G is the grid search,
and x∗ is the parameter which yields the global maximum.

Fig. 3. Left Training environment with a procedurally generated footstep targets Center: Least-challenging test environment, with 100% infill and no height
variation. Right: Most-challenging test environment with 80% infill and 10 cm height variation

Proof. The proof follows from the observation that
Ex0∈{G}f(xbest) ≥ Ex0∈rand{P}f(xrand) and the rest of
the proof is trivial.

IV. EXPERIMENTS AND RESULTS

We train our LLP in simulation using NVIDIA Isaac Gym
[21]. We sample 100 steps from 4,000 environments for a
total of 400,000 samples per policy update. Each policy is
trained for 750 iterations giving 300 million total samples. The
training environment consists of terrain with 90% infill and
terrain blocks with heights varying by up to 5 cm. In addition
to our proposed method, we also train an end-to-end reinforce-
ment learning policy for comparision. The experiments in this
section are designed to answer the following questions:

• How does our proposed optimization method perform in
quadruped locomotion over challenging terrain compared
to a PMTG [7] end-to-end policy?

• Does our proposed approach enable higher LLP rewards
than achieved during training?

In this section, we will first give more details on LLP
training, then define the end-to-end RL policy, and finally
discuss results on various test terrains.

A. Training Environment

We generate sequences of footstep targets corresponding to
a trotting gait, where the robot is tasked with hitting targets
for two feet at a time, alternating between the front left and
rear right feet and the front right and rear left feet. We have
found empirically that the trotting gait is the most suitable for
implementation on the Aliengo robot in terms of robustness
and speed. Each environment contains a sequence of footstep
targets parameterized by a random step length sampled from
U(0, 0.2) m and a random heading sampled from U(0, 360).
Additionally, all targets are independently randomly shifted by
U(−0.1, 0.1) m in the x and y directions.

The training terrain is pictured in Figure 3.

B. End-to-End RL Policy

We train an RL policy on the same training terrain with
the same trajectory generator action space [7] using PPO. The
reward function for the end-to-end policy contains all of the
reward terms and coefficients in II-C, sans the footstep target
reward and the velocity towards target reward. Additionally,

Fig. 4. A comparison of the proposed value-function-based approach with
an end-to-end learned policy. Each bar represents the average result of five
rollouts. The HLP enables the LLP to obtain higher normalized rewards than
the end-to-end policy. Even on terrains much more difficult than the ones
encountered in training, our polices achieves normalized rewards greater than
100%.

to encourage forward locomotion, we add the reward term
given by Equation 7, where v is the robot velocity and κV X

is set to 1.0. The robot velocity is clipped to encourage the
development of stable gaits for a fair comparison. The clip
value of 0.5 is in meters per second.

−κV X · clip(vx,− inf, 0.5) (7)

Additionally, we add a term to penalize velocity in the y-
direction, given below in Equation 8.

−κV Y |vy| (8)

C. Locomotion on challenging terrain

We test the trained policies on environments of varying
difficulty, depicted in Figure 3. Our simulation terrain varies
in difficulty along two axes: infill and height variation. An
infill lower than 100% indicates gaps or holes in the terrain.
The height of terrain blocks is uniformly randomized such
that the maximum range of heights is equal to a terrain height
variation parameter. We run experiments on terrains with 100,
90, and 80 percent infill and 0, 5, 7.5, and 10 cm height

Fig. 5. Distance traveled in meters for each approach across different test
terrains. Each bar represents the average result of five rollouts.

Fig. 6. A collision is defined as a robot body part (excluding feet) in contact
with terrain, or a robot part in contact with another robot body part. Multiple
collisions may occur on a single timestep. The y-axis is in log scale.

variation. For all experiments with the proposed method, we
set alpha in Equation 4 to 0.0, which corresponds to rewarding
footstep targets set in the positive x-direction. The weight of
the directional term, κHD in Equation 6 is set to 50.0 for all
experiments.

1) Percentage of Per-Timestep Training Reward Achieved:
We use reward as a proxy for overall performance of each
method, since it encodes the core objective of hitting footstep
targets (or forward velocity, for the end-to-end policy) in
additional to other practical concerns such as avoiding col-
lisions and slipping. Since the proposed method and the end-
to-end method do not have the same exact value function, we
normalize rewards by the max reward achieved during training
(at 750 policy updates). Figure 4 plots the normalized rewards
achieved on our array of test terrains. The HLP optimization
process enables higher rewards than those achieved in training
in eight out of 12 terrains. The end-to-end policy cannot benefit

from online optimization, giving a lower normalized reward
than our proposed method on 10 out of 12 terrains.

2) Distance Traveled: Figure 5 shows that our proposed
method travels a shorter distance than the end-to-end method
in all but two environments. We posit that this is due to our
its objective of picking high-value, or ”safe”, footstep targets
to execute. The largest gaps in distance occur in the 80%
infill environments, where the presence of holes stops forward
progress, since it is impossible to hit a footstep target over
a hole. Our method’s conservativism in such a scenario is
highlighed in the next subsection.

3) Collisions: Figure 6 gives the average number of colli-
sions per timestep. In two environments with 80% and 90%
infill, the end-to-end policy encounters an extremely high
number of collisions, with over one collision per timestep on
average (meaning multiple parts of the robot were in collision
at once). This occurs whenever the end-to-end policy is stuck
in a terrain hole, which does not occur with our proposed
method.

V. CONCLUSION

The proposed hierarchical reinforcement learning frame-
work improved performance on simulated quadruped loco-
motion over difficult terrain as demonstrated through higher
normalized reward and a lower number of collisions. By
leveraging a novel approach where the high-level policy
optimizes over footstep targets using the low-level policy’s
value function, we remove the requirement for additional
environment samples or neural network parameter updates
beyond LLP training.

Future work will focus on conducting hardware experi-
ments to further validate the applicability of our approach
in physical environments. Additionally, we aim to explore
integrating model-based controllers as the low-level policy, as
modularity is a practical benefit of hierarchical reinforcement
learning. A combination of model-based and learning-based
approaches offers a promising direction for further improving
the adaptability and reliability of quadruped locomotion in
complex real-world applications.

REFERENCES

[1] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” arXiv preprint
arXiv:1812.11103, 2018.

[2] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the real
world with minimal human effort,” arXiv preprint arXiv:2002.08550,
2020.

[3] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[4] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adapta-
tion with meta strategy optimization,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2950–2957, 2020.

[5] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” in Conference on robot
learning. PMLR, 2023, pp. 403–415.

[6] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning vision-
guided quadrupedal locomotion end-to-end with cross-modal transform-
ers,” arXiv preprint arXiv:2107.03996, 2021.

[7] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” in Con-
ference on Robot Learning. PMLR, 2018, pp. 916–926.

[8] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, p. eabc5986, 2020.

[9] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan,
and T. Zhang, “Visual-locomotion: Learning to walk on complex terrains
with vision,” in 5th Annual Conference on Robot Learning, 2021.

[10] A. Escontrela, G. Yu, P. Xu, A. Iscen, and J. Tan, “Zero-shot ter-
rain generalization for visual locomotion policies,” arXiv preprint
arXiv:2011.05513, 2020.

[11] A. Iscen, G. Yu, A. Escontrela, D. Jain, J. Tan, and K. Caluwaerts,
“Learning agile locomotion skills with a mentor,” in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 2019–2025.

[12] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[13] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Real-time trajectory adaptation for quadrupedal locomotion using deep
reinforcement learning,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 5973–5979.

[14] S. Gangapurwala, A. Mitchell, and I. Havoutis, “Guided constrained
policy optimization for dynamic quadrupedal robot locomotion,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3642–3649, 2020.

[15] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[16] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “Allsteps:
Curriculum-driven learning of stepping stone skills,” in Computer
Graphics Forum, vol. 39, no. 8. Wiley Online Library, 2020, pp. 213–
224.

[17] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Scalable
deep reinforcement learning for vision-based robotic manipulation,” in
Conference on robot learning. PMLR, 2018, pp. 651–673.

[18] J. Li, C. Tang, M. Tomizuka, and W. Zhan, “Hierarchical planning
through goal-conditioned offline reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 10 216–10 223, 2022.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[20] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[21] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High
performance gpu-based physics simulation for robot learning,” arXiv
preprint arXiv:2108.10470, 2021.

	Introduction
	Low-Level Policy Training
	RL Preliminaries
	Action Space
	Reward Function
	Footstep Target Reward
	Velocity Towards Target
	Smoothness Reward
	Foot Slip Penalty
	Foot Stay Reward
	Collision Penalty
	Trajectory Generator Swing Phase Reward

	Observation Space

	High Level Policy
	Action Space
	Objective Function
	Optimization

	Experiments and Results
	Training Environment
	End-to-End RL Policy
	Locomotion on challenging terrain
	Percentage of Per-Timestep Training Reward Achieved
	Distance Traveled
	Collisions

	Conclusion
	References

