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METHODS
First, we train a low-level policy (LLP) to hit 

randomly-generated footstep targets over stepping 

stone terrain (bottom figure) using the Proximal 

Policy Optimization (PPO) [3] algorithm and a reward 

function that encourages the robot to hit the footstep 

targets. During the course of training, we learn a 

value function (below) which estimates the 

discounted sum of future rewards at the current state        

__ given the current policy    . The state of the robot 

includes information about the robot’s joints, the 

surrounding terrain, and the location of the next 

footstep targets.

INTRODUCTION
Legged robots are useful platforms for traversing 

treacherous terrain. Recently, there has been an 

explosion of interest in using reinforcement learning 

(RL) for the control of quadruped robots [1][2]. 

However, the naive application of RL often results in 

policies that exhibit strange motions that are 

unsuitable for real-world deployment. In this work, 

we hope to overcome these issues with a novel 

RL-based footstep planner and joint-level controller 

for traversing stepping stones. By providing an 

intermediate goal of hitting footstep targets, we hope 

to learn realistic and successful locomotion policies.

RESULTS
To evaluate the performance of our method, we test 

the quadruped’s ability to traverse stepping stone 

terrains of varying difficulty. We vary the density of 

the stepping stones (higher density is easier) and the 

random height variation of the stepping stones (lower 

is easier). Success is defined as traversing an 8.0 m

CONCLUSION
Our method is able to cross stepping stone terrain, 

but its performance can be improved. In the future, 

we plan to experiment with the following:

• Applying temporal smoothing to the HLP 

• Reducing the differences between the LLP training 

environment and the evaluation environments

• Replacing the “greedy” directional term in the 

objective function of the HLP

Anticipated Graduation: May 2025 www.jeremiahcoholich.com

BENEFITS TO DOD
Quadruped robots are unmanned and highly versatile 

platforms which can be deployed for missions such 

as search-and-rescue, reconnaissance, and 

explosive ordnance disposal [4]. This research 

targets locomotion over difficult terrain, which is 

frequently encountered in warzones. The end goal is 

to use quadrupeds to support or replace military 

personal in dangerous environments. 
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Our proposed planning and control architecture. The Low-Level 
Policy is learned via reinforcement learning. The footstep target 
optimization is defined in the equations below.

Next, we define a high-level policy (HLP) which 

selects optimal footstep targets with respect to the 

value function of the LLP and an objective that 

rewards selecting targets in a desired direction. The 

HLP solves the optimization problem (next column),

where are the next          

The training environment for the Low-Level Policy. Left: 
Thousands of robots are simulated in parallel on terrain with 
varying difficulty. Right: Two randomly generated sequences of 
footstep targets.

footstep targets,      is the desired robot heading, R is 

a 3D rotation matrix, and k is a hyperparameter that 

controls the tradeoff between the value-based term 

and the directional term.

We compare this approach to an end-to-end policy 

trained with reinforcement learning, where the robot 

is simply rewarded for its velocity in the forward 

direction over the stepping stone terrain.

Quadruped crossing the stepping stones terrain with density of 75% 
and 0.1 meter height variation using our proposed approach (top) 
and an end-to-end learned policy (bottom). The previous foot 
contact locations with the terrain are plotted.

A comparison of the proposed value-function-based approach with 
an end-to-end learned policy, averaged across 100 trials (5 
policies, 20 trials each). Error bars give the standard deviation 
between policies. Background colors delineate between 
environments with different stepping stone height variation.

section of terrain without falling or colliding with 

anything. Our method achieves some success in 

traversing difficult terrain, but does not outperform 

the end-to-end approach.


