
Learning High-Value Footstep Placements for
Quadruped Robots

Jeremiah M. Coholich, Zsolt Kira

Abstract—Learning policies for quadruped locomotion from
scratch with reinforcement learning is challenging and motivates
the need for behavioral priors. In this paper, we demonstrate that
the combination of two such priors, gait trajectory generators
and foot placement selection, are effective means to train robust
policies. We specifically aim to learn a locomotion policy over a
terrain consisting of stepping stones, where footstep placements
are limited. To do this, we aim to add a behavioral prior
for choosing footstep placements proposing a method to choose
footstep targets which are optimal according to the value function
of a policy trained to hit random footstep targets. We implement
this method in simulation on flat ground and a difficult stepping
stones terrain with some success and hypothesize about directions
of future work which could improve our approach.

Index Terms—Legged locomotion, reinforcement learning,
rough terrain, quadruped robot

I. INTRODUCTION AND RELATED WORK

In recent years, there has been an explosion of interest in
using reinforcement learning (RL) for the planing and control
of quadruped robots. It is possible to learn locomotion poli-
cies from scratch in an end-to-end manner [1]–[4]; however,
this is typically challenging and requires extensive reward
function engineering, hyperparameter tuning, or environment
engineering. While RL promises to be a general framework for
robots to autonomously acquire a wide variety of skills, legged
locomotion poses a difficult learning and control problem due
to underactuation, high-dimensional state spaces, and inverse-
pendulum dynamics.

To avoid these issues and increase the success rate of
learning locomotion policies, researchers began to incorporate
various priors into RL algorithms. Most notably, [5] proposes
a gait trajectory generator (TG) and limits the RL policy to
learning residuals which are added to the output of the TG.
This approach was subsequently adopted by many others [6]–
[9] as it greatly improves the development time, sample effi-
ciency, and success rate of learning locomotion policies. Other
forms of prior knowledge are feasible as well. [10] acquires
policies by imitating animals directly. [11] learns a policy that
makes corrections to trajectories generated by an established
physics-based planner, while [12], [13] constrain the learning
process to respect physics-based feasibility criteria.

In this work, our ultimate goal is to learn polices which
traverse footstep-placement-constrained terrain or ”stepping
stones”. In this domain, legged robots clearly trump wheeled

This work was supported by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate (NDSEG) Fellowship
Program.

Fig. 1: The Aliengo robot in the training environment with
randomly-generated footstep targets. The observation consists
of robot proprioception and exteroception. The robot is re-
warded for hitting footstep targets.

robots, since legged robots require only small, discrete con-
tacts with terrain. Planning these contacts, or footstep place-
ments, is therefore crucial in unlocking the full capability
of legged robots. Our hypothesis is that biasing our policy
architecture with focus on footstep placements will improve
our ability to learn locomotion over stepping stones.

Our method involves a two-layer hierarchy, where footstep
target locations are passed from the high level policy (HLP)
to the low level policy (LLP). The core contribution is the
development of a novel method for planning footstep locations
which leverages the value function that is obtained for free
during the training of the LLP. First, we train the LLP to con-
trol an Aliengo quadruped in simulation to hit a sequence of
randomly-generated footstep targets over the stepping stones.
Crucially, the relative location of future footstep targets is
included in the LLP observation, which is the input to the
policy and value functions. During runtime (after the LLP is
trained), the HLP chooses footsteps according to an objective
that combines value (according to the LLP value function) and
a directional objective. The HLP therefore does not require RL
training. The LLP value function encodes information about
the surrounding terrain and current state of the robot, meaning
that our method does not rely on heuristics or hand-derived
constraints for footstep locations.

The works most similar to ours are [14] and [13]. In [14],
the authors train bipeds in simulation to walk on increasingly

difficult stepping stone sequences. In our work, we solve the
problem of planning foot placements over terrain with many
stepping stones, instead of traversing a fixed sequence. In
[13], the authors propose a two-layer hierarchy where footstep
targets are communicated between the high-level and low-
level. However, they train their high-level with RL to satisfy
a linear-program to check for the feasibility of each robot
stance (in lieu of simulating physics), which is distinct from
our value-function-based approach.

II. LOW-LEVEL POLICY TRAINING

The low-level policy (LLP) is trained on the task of control-
ling the quadruped to hit randomly-generated footstep targets.

A. RL Preliminaries

We formulate the task of hitting footstep targets as a Markov
decision process, which is a tuple (S,A, p, r, ρ0, γ). S is the
set of environment states, A is the set of policy actions, p :
S × A → S is the transition function of the environment,
r : S×A×S → R is the reward function, ρ0 is the distribution
of initial states, and γ is a discount factor. Our goal is to find
an optimal policy π∗ : S → A that maximizes the discounted
sum of future rewards J(π) over time horizon H .

J(π) = E{si,ai}H
0 ∼π, ρ0

[
H∑
t=0

γtr (st,at, st+1)

]
(1)

π∗ = argmax
π

J(π) (2)

We use proximal policy optimization [15] with generalized
advantage estimation (GAE) [16] to solve for π∗, with λ =
0.95 and γ = 0.99. Additionally, we train a value network to
predict the value of a state given the current policy. The value
network is trained with the mean-squared error loss, where the
target values are calculated from samples.

Vπ (s0) := Eτ∼π

[
r (s0,a0, s1) +

H∑
t=1

γtr (st,at, st+1)

]
(3)

The policy and value networks are parameterized as separate
multilayer perceptrons with two hidden layers of 512 and 256
neurons each.

B. Training Environment

We train the LLP to hit randomly-placed footstep targets
over a bed of procedurally-generated stepping stones. The
training terrain contains varying difficulties of stepping stones
as characterized by stepping stone density and stepping stone
height variation.

As our action space, we use the Policies Modulating Tra-
jectory Generators (PMTG) architecture [5] with the foot
trajectories given in [6].

We generate sequences of footstep targets corresponding to
a trotting gait, where the robot is tasked with hitting targets
for two feet at a time, alternating between the front left and
rear right feet and the front right and rear left feet. In our

notation, each foot is associated index [1, 4, 2, 3], in the order
the feet were listed. The pair of feet that the robot has active
targets for at a given time is denoted as N ∈ {{1, 4}, {2, 3}}.
Each environment contains a sequence of footstep targets with
a random heading and step length. The robot observation
consists of proprioception, the relative position of the next
footstep targets, and a heightmap of 284 points around the
robot’s feet.

We train the agent with a reward function that is dominated
by a term to encourage the agent to hit footstep targets, given
in equation 4. A target is considered hit if the foot makes
contact with at least 5 N of force in a 7.5 cm radius around
the target while the trajectory generator is in the contact phase
for that foot. d is the distance in the x-y plane from the foot
center to the target center. If a foot hits closer to the center of
the target, the reward will increase by up to 50%. Equation 4 is
heavily inspired by [14]. If the robot hits both active footstep
targets at once, the reward for each foot is added, the total
is tripled, and the environment advances to the next pair of
targets.

1 + 0.5 ∗
(
1− d

0.075m

)
(4)

The full reward function contains nine terms and is given
in Appendix B. Further details about the training environment
including terrain generation, footstep target generation, obser-
vations, and termination conditions are included in Appendix
D

C. Training Results

We train policies in simulation using NVIDIA Isaac Gym
[17]. We sample 60 steps from 3,333 environments for a total
of 199,980 samples per policy update. Each policy is trained
for 5k iterations or ∼ 109 total samples. Figure 2 shows the
RL training curve for our proposed method with and without
the trajectory generator. Similar to prior works, the trajectory
generator is crucial to getting our method to work repeatably.

Fig. 2: Training reward obtained by the low-level policy with
and without the trajectory generator. Each curve is the average
of 5 random seeds, with the shaded regions indicating the
standard deviation.

Fig. 3: Policy architecture incorporating a high-level footstep
planner which makes use of the low-level policy’s value
function for selecting high-value footstep targets.

III. HIGH LEVEL OPTIMIZATION

During runtime, the high-level policy (HLP) chooses foot-
step targets for the LLP. The high level policy has access to
the current observation Ot, the value network V (·) of the LLP,
plus the robot yaw θyaw. The value network is a function of
the relative location of footstep targets d, since d is included
in Ot. The 4-dimensional action space of the HLP includes
the x and y location of the next footstep targets, as defined in
equation XX.

dnext = {da,x, da,y, db,x, db,y} := {di,j : i ∈ N , j ∈ {x, y}}

First, let the HLP simply choose the highest-value footstep
targets for the LLP. This is formulated as the optimization
problem in Equation 5.

d∗
next = argmax

dnext

V (O) (5)

Recall that the value function maps observations to expected
discounted future rewards. Therefore, d∗

next are the footstep
targets that yield the highest long-term reward for the LLP.

In order to encourage locomotion in a particular direction,
we can add a secondary objective to equation 5 to yield
equation 7. This directional objective H (equation 6) is pa-
rameterized by a heading angle α and a weight k. We use the
robot’s yaw to convert the relative footstep target positions
(dnext) from the robot’s frame to the global frame. Rz(θyaw)
is the 3D rotation matrix about the vertical axis.

H =

[
cosα sinα 0

]
Rz(θyaw)

da,x db,x

da,y da,y

0 0

 (6)

d∗
next = argmax

dnext

V (s0) + kH (7)

The hyperparameter k controls the tradeoff between picking
targets that maximize the expected success of the LLP with
picking targets that advance the robot’s movement in direction
α.

There are multiple options for solving equation 7, including
stochastic gradient descent since the value function is dif-
ferentiable. However, we instead choose to discretize the 4-
dimensional space of dnext into a box [−0.15, 0.15]4 with 17
points per axis and use grid search. There are several reasons
for this. First of all, our action space is small enough in dimen-
sionality for this simple method to be feasible. Additionally,
the action space is tolerant of coarse discretizations. If the
footstep targets are suboptimal due to a coarse discretization,
the LLP will simply choose to place its feet slightly off-target;
the HLP output targets are not a hard constraint. Finally, there
is a benefit in performance from grid search. We can batch the
set of test observation and evaluate them all in single forward
pass through the value network using GPU-acceleration.

IV. RESULTS AND EXPERIMENTS

A. Stepping In-place

In this experiment, the HLP chooses footstep targets with
equation 5 (i.e. without any directional objective). We record
the reward, episode length, and other metrics obtained by
the LLP given these optimized footstep targets. In table I we
compare these metrics to those obtained by an HLP outputting
random and fixed footstep targets. Random footstep targets
predictably lead to poor performance, but solving equation 5
curiously does not yield footstep targets that are better than
fixed targets. More details can be found in Appendix C.

Possible explanations for this include:

• Gap between training and testing environments: Dur-
ing training, the footstep targets are fixed in the global
frame. During testing, the footstep targets change at every
timestep in response to the HLP output.

• Optimization is too greedy. The value function outputs
an expected discounted sum of future rewards. We train
with a discount factor of 0.99, which is perhaps too
low and makes the policy short-sighted. Increasing the
discount factor or incorporating other forms of look-
ahead may improve performance.

• Value function output is not smooth: Neural networks
are complex and highly non-linear functions which may
produce unpredictable and unsmooth outputs. Perhaps

filtering the outputs of the LLP value function or run-
ning the optimization at a lower frequency will improve
results.

B. Locomotion on challenging terrain

We evaluate our proposed method and end-to-end trained
policy on a series of stepping-stone terrains of varying diffi-
culty. We vary the stepping stone density and height variation.
Figure 5 reports the success rates of each approach on each
terrain, where success is defined as traveling 10 meters forward
in under 10,000 timesteps without termination. The end-to-
end approach outperforms our proposed method. Results for
a wider range of environments and metrics can be found in
Appendix A.

In figure 4, we show the quadruped traversing the stepping
stone environment and plot the locations where each foot
makes contact with the terrain. The end-to-end policy learns
to take longer steps compared to our method.

V. CONCLUSION

We propose a strategy for incorporating an architectural bias
into a learned policy for quadruped locomotion, with a priority
on learning what good footstep placements are. Specifically,
we choose footstep targets which are optimal according to the
the value function of a policy that is trained to hit random
footstep targets. We implement this method in simulation on
flat ground and on difficult stepping stones terrain. Thus far,
we have not obtained evidence that our proposed method
outperforms an end-to-end policy. The root of the issue is
likely related to the inability of the HLP to outperform fixed
footstep targets (as explained in section IV-A). Changing our
approach to decrease the short-sightedness of our HLP, smooth
the HLP outputs, and eliminate the gap between training
and testing environments will likely help. Additional future
work includes swapping the terrain heightmap observation for
egocentric vision and running real-world experiments.

TABLE I: Metrics for the stepping-in-place task for different high-level policies. The random agent selects a footstep target
within the search space (a 0.3 meter box around the previous footstep target) at every timestep with a uniformly random

probability. The fixed agent always gives the same footstep targets corresponding to a neutral standing position. The
optimized agent gives the highest value footstep targets according to equation 5. The metrics are averages across 20 rollouts
for each of 5 policies trained with a different random seed (100 rollouts total). The environment is set to timeout after 5,000

timesteps.

Footstep
Target
Selection
Method

Reward
per
Timestep

Reward
per
Footstep

Reward
per
Episode

Episode
Length
(timesteps)

Footstep
Targets
Hit

Timesteps
per
Footstep

Random 1.21 52.11 668. 556. 12.95 43.62
Fixed 3.93 39.29 19,643. 5,000. 499.96 10.00
Optimized 3.51 41.39 6,905. 1,878. 170.63 12.00

Fig. 4: Quadruped crossing the stepping stones terrain with density of 75% and 0.1 meter height variation using (a) our
proposed approach and (b) a end-to-end learned policy. The previous foot contact locations with terrain are plotted. (: Front
Left Foot, : Rear Left Foot, : Front Right Foot, : Rear Right Foot)

Fig. 5: A comparison of the proposed value-function-based
approach with an end-to-end learned policy, averaged across
100 episodes (5 policies, 20 episodes each). Error bars give
the standard deviation between policies. Background colors
delineate between environments with different stepping stone
height variation.

REFERENCES

[1] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” arXiv preprint
arXiv:1812.11103, 2018.

[2] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the real
world with minimal human effort,” arXiv preprint arXiv:2002.08550,
2020.

[3] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[4] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adapta-
tion with meta strategy optimization,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 2950–2957, 2020.

[5] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” in Con-
ference on Robot Learning. PMLR, 2018, pp. 916–926.

[6] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, p. eabc5986, 2020.

[7] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan,
and T. Zhang, “Visual-locomotion: Learning to walk on complex terrains
with vision,” in 5th Annual Conference on Robot Learning, 2021.

[8] A. Escontrela, G. Yu, P. Xu, A. Iscen, and J. Tan, “Zero-shot ter-
rain generalization for visual locomotion policies,” arXiv preprint
arXiv:2011.05513, 2020.

[9] A. Iscen, G. Yu, A. Escontrela, D. Jain, J. Tan, and K. Caluwaerts,
“Learning agile locomotion skills with a mentor,” in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 2019–2025.

[10] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[11] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Real-time trajectory adaptation for quadrupedal locomotion using deep
reinforcement learning,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 5973–5979.

[12] S. Gangapurwala, A. Mitchell, and I. Havoutis, “Guided constrained
policy optimization for dynamic quadrupedal robot locomotion,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3642–3649, 2020.

[13] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[14] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “Allsteps:
Curriculum-driven learning of stepping stone skills,” in Computer
Graphics Forum, vol. 39, no. 8. Wiley Online Library, 2020, pp. 213–
224.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[16] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[17] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High
performance gpu-based physics simulation for robot learning,” arXiv
preprint arXiv:2108.10470, 2021.

APPENDIX A
EVALUATION OF POLICIES ACROSS TERRAIN DIFFICULTY

Fig. 6: A comparison of the proposed value-function-based approach with an end-to-end learned policy. Each data point is an
average across 100 episodes (5 policies, 20 episodes each). The error bars show the standard deviation between the averages
of the 5 policies. The background colors group environments with the same stepping stone height variation.

APPENDIX B
REWARD FUNCTION

The reward function for the LLP is the sum of the following reward terms.

A. Hit Footstep Target Reward

A simplified version of this reward term is given in equation 4 in Section II-B. di,t is the distance in the xy plane from the
foot center to the target center. If a foot hits the center of the target, the reward increases 50%. hi,t ∈ {0, 1} indicates whether
or not foot i has hit its footstep target at time t. dhit is the xy distance threshold for hitting a footstep targets (set to 7.5 cm).

The factor

(
2.0

∏
i∈N

hi,t + 1

)
triples the per-foot rewards if both footstep targets are achieved on the same timestep.

2.0

2.0
∏
i∈N

hi,t + 1

∑
i∈N

hi,t

(
1 + 0.5 ∗

(
1− di,t

dhit

))
B. Torque Penalty

This term penalizes the sum of squared joint torques.

−1× 10−6 ∥τ∥22
C. Smoothness Reward

More realistic robot motions are obtained by penalizing the norm of second-order finite differences of the actions.

−0.03125 ∥at − 2at−1 + at−2∥2

D. Foot Slip Penalty

This term penalizes xy translation greater than 2 cm of feet that are in contact. ci,t gives the vertical contact force for foot
i at time t in Newtons. xi,t ∈ R2 is the global position in meters on the x-y plane for foot i at time t.

−0.0625
∣∣{i : ∥xi,t − xi,t−1∥2 > 0.02, ci,t > 0, ci,t−1 > 0

}∣∣
E. Velocity Towards Target

In order to provide denser rewards that encourage hitting footstep targets, we reward foot velocity towards targets.

−0.25

∑
i∈N

ḋi,t

F. Foot Stay Reward

Only two feet have active footstep targets at any time. In order to prevent the robot from immediately moving its feet off
of footstep targets after they are hit, we reward the agent for keeping its feet on previous targets.

0.25

∑
i∈{1,2,3,4}\N

hi,t

(
1 + 0.5 ∗

(
1− di,t

0.075

))
G. Collision Penalty

g is the number of robot linkages in that have collided with other linkages or terrain, excluding foot collisions with terrain.

−0.125g

H. Trajectory Generator Swing Phase Reward

This term rewards the trajectory generator for entering mid-swing-phase, weighted by the frequency of the trajectory generator
(fPMTG). 1{·} is the indicator function. Empirically, we observe that this term is essential for preventing the learning of a
degenerate policy that remains still and collects maximum rewards for foot stay, foot slip, smoothness, torque, and orientation.

1[0.25π,0.75π]∪[1.25π,1.75π]{ϕt} fPMTG

I. Orientation Penalty

This term penalizes the roll and pitch of the robot.

−0.1 (|θroll|+ |θpitch|)

APPENDIX C
IN-PLACE FOOTSTEP OPTIMIZATION

Figure 7 shows the average trajectories taken by policies trained with different random seeds when the HLP was tasked
with solving Equation 5. For each random seeds, the robot’s position drifts in a different direction with a different amount
of rotation. As explained in section IV-A, the robot obtains lower reward on average when following the optimized footstep
targets versus the fixed targets in the first plot.

Fig. 7: Plots of data obtained from stepping-in-place experiments from Section IV-A. The plot in the top-left corner shows the
fixed footstep targets which correspond to a neutral robot standing position. Other plots show the trajectory of footstep targets
for five policies trained with different random seeds averaged over 20 rollouts. Each circle represents an average footstep target
location, with its size indicating variance.

APPENDIX D
TRAINING ENVIRONMENT

Fig. 8: Left: The training environment at 10% scale. The actual training environment is 10x as wide with 10 as many robots
simulated in parallel. Right: Samples of randomly generated footstep target sequences for training. Paired targets are plotted
in the same color.

1) Footstep Target Generation: We generate sequences of footstep targets corresponding to a trotting gait, where the robot
is tasked with hitting targets for two feet at a time, alternating between the front left and rear right feet and the front right
and rear left feet. In our notation, each foot is associated index [1, 4, 2, 3], in the order the feet were listed. The pair of feet
that the robot has active targets for at a given time is denoted as N ∈ {{1, 4}, {2, 3}}. We have found empirically that the
trotting gait is the most suitable for implementation on the Aliengo robot in terms of robustness and speed.

A target is considered hit if the foot makes contact with at least 5 N of force in a 7.5 cm radius around the target while the
trajectory generator is in the contact phase for that foot. If the robot hits both active footstep targets at once, the environment
advances to the next pair of targets. The agent receives a reward for hitting footstep targets, plus a bonus for hitting both at
once and another bonus for hitting closer to the center of the target, inspired by [14].

Each environment contains a sequence of footstep targets parameterized by a random step length sampled from U(0, 0.1)
m and a random heading sampled from U(−8°, 8°). Additionally, all targets are independently shifted by U(−0.1, 0.1) m in
the x and y directions.

2) Observation Space: The policy observation is a vector Ot = {x, ẋ, τ, O, c, d, f , cosϕ, sinϕ, at−1, at−2,
F} ∈ R372 where x represents the foot positions in the hip-frame, ẋ is the foot velocities, τ is the joint torques, O
is the IMU data consisting of {θroll, θpitch, θ̇roll, θ̇pitch}, c ∈ {0, 1}4 is a vector giving the contact state of each foot,
d = {d1,x, d1,y, d2,x, d2,y, d3,x, d3,y, d4,x, d4,y} gives the x and y distances from each foot to the corresponding to the next
(for i ∈ N) or previous (i /∈ N) footstep targets, f ∈ {0, 1}4 is a multi-hot encoding of N , ϕ is the phase of the trajectory
generator, at−1 and at−2 give the previous two actions taken by the policy, and F is a scan of points around each foot.

The foot scan F gives the difference in height between each foot and 71 points on the surrounding terrain. These points are
equally spaced around seven rings with radii [0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2], where each ring contains 10 points.
There is one additional point directly under each foot. F is clipped to [-1.0, 1.0] m.

As in [12], the observation is corrupted with Gaussian noise with zero mean and standard deviation given by the vector
{[0.001]12, [0.02]12, [0.1]12, [0.05, 0.05, 0.1, 0.1], [0]4, [0]8, [0]4, [0.05]284, [0]15, [0]15} to simulate sensor noise and inaccuracy.

3) Termination Conditions: A training episode will terminate if any of the following conditions are met:
• |θroll| > 90° or |θpitch| > 90°
• The number of timesteps exceeds 3600

• It has been 300 timesteps (5 seconds) since the robot last hit a pair of footstep targets.
• The robot is within 0.5 meters of the end of the stepping stone terrain
• The robot has hit all of the footstep targets

4) Action Space: We use the Policies Modulating Trajectory Generators (PMTG) architecture [5] with the foot trajectories
given in [6]. Our 15-dimensional action space consists of trajectory generator frequency, step length, standing height, and 12
residuals corresponding to the 3D position of each foot. The trajectory generator outputs foot positions in the hip-centered
frame (as defined in [6]). These are converted into joint positions with analytical inverse kinematics and tracked with PD control.

5) Procedural Terrain Generation: We generate a bed of non-overlapping stepping stones to be shared between all
environments, with varying the height variation and density as shown in Fig 8. All robots are spawned along the y-axis
and tasked with traveling in the +x direction. Each stepping stone surface is a 0.1 m square spaced 0.001 m from neighboring
stones. The heights of the stepping stones are drawn randomly from a height of 2 meters plus or minus half of the stepping
stone height variation.

