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Abstract

Transferring policies learned in simulation via reinforce-
ment learning (RL) to the real world is a challenging re-
search problem in robotics. In this study, the sim2real trans-
fer method of three papers is examined. In [2], the RL agent
learns a robust policy by limiting the observation size and
using domain randomization. The sim2real method in [11]
learns an adaptive policy conditioned on a latent space that
implicitly encodes the physics parameters of its environ-
ment. Samples must be collected on the robot to learn a
latent space corresponding to the physics of the real world.
In [6], the authors also employ a learned latent space, but
constrain the mutual information between the latent vari-
ables and the input. This ”information bottleneck” prevents
the latent space from overfitting to the simulation physics
parameters. Finally, I propose using the same information
bottleneck approach on policy observations to learn a ro-
bust policy more effectively.

1. Introduction

Wheeled robots, which are relatively simple control, are
mostly limited to flat ground or paved roads. Legged robots,
on the other hand, have the ability to go wherever humans
may go. These platforms allow embodied intelligence to be
applied in a much wider variety of situations. For example,
legs allows robots to go up and down stairs, which would
be critical for a home robot in a two-story house. The focus
of this paper will be on four-legged robots.

Unfortunately, controlling quadrupeds is a difficult chal-
lenge. Designing planning and control algorithms typi-
cally requires expert knowledge of multi-body dynamics
and quadrupedal locomotion. Controllers may require ex-
tensive gain tuning and accurate contact modeling. Legged
robots are hybrid dynamical systems, which means plan-
ners must optimize over continuous and discrete variables,
which is computationally difficult [3, 10] .

Model-free reinforcement learning (RL) promises to be
a way to learn locomotion skills without expert domain
knowledge. However, these algorithms are generally sam-
ple inefficient. Fortunately, we can acquire samples quickly
using physics simulators, such as Mujoco [9] or Pybullet

[1]. Training in simulation also protects the robot, as re-
inforcement learning algorithms often take random or un-
predictable actions during training. However, transferring
policies trained in simulation to the real world is challeng-
ing.

Often, deep RL algorithms are tested on the same envi-
ronment they are trained on. One example of such envi-
ronment is the Atari games, a popular RL benchmark [5].
The state space of Atari games (raw pixels) is so high di-
mensional that it is impossible to sample every state, which
means RL algorithms need to generalize across the state
space after being trained on a finite number of samples. For-
tunately, neural networks are good at doing this.

In sim2real transfer, the test environment is different
from the training environment. If the locomotion problem is
viewed as a partially-observable Markov Decision Process,
the conditional observation probabilities and the state tran-
sition dynamics both shift when moving from sim to real.
The following papers each employ a unique strategy handle
this shift.

2. Literature Review

2.1. Policies Modulating Trajectory Generators [2]

The paper’s title refers to the policy architecture de-
signed by the authors; a neural network outputs the parame-
ters for a gait generator instead of directly outputting robot
joint targets. However, the details of this gait generator are
not important to the sim2real transfer and are omitted for
brevity. The policy architecture enables the RL agent to
receive only 4D IMU data and still successfully learn a lo-
comotion policy. This is in contrast to most learned policies
which receive IMU data as well as the state of each robot
joint. The small policy input size serves to ”regularize” the
agent and prevent it from overfitting to simulated environ-
ments.

The second strategy the authors use for sim2real trans-
fer is domain randomization and perturbations. This makes
the agent robust to a wide variety of physical robot param-
eters. The learned policy is directly transferable to the real
robot. However, as shown in Fig. 1, robust policies sacrifice
performance. [8]
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Figure 1. Comparison of a policy trained with body inertia ran-
domization to one trained without. Using randomization prevents
the agent from obtaining the optimal policy for any particular value
of body inertia. [8]

2.2. Learning Fast Adaptation with Meta Strategy
Optimization [11]

The sim2real strategy in this work is conditioning the
policy on a low-dimensional latent space which implicitly
encodes the physics of the environment. During training,
many different simulated environments are generated with
different physics parameters. The learning algorithm al-
ternates between optimizing the environment-specific latent
space and optimizing the policy. Both the latent space and
the policy are optimized via Augmented Random Search
[4].

When the policy is deployed, data from the real robot is
collected in order to find a latent space that corresponds to
the physics of the real world. This only takes about 4000
samples, or 75 seconds worth of data. Additionally, the
learned latent space enables the policy to adapt to a wide
variety of scenarios not seen during training, such as walk-
ing with a weakened motor or walking up a slope.

2.3. Learning Agile Locomotion Skills by Imitating
Animals [6]

In this paper, the authors train a robot to mimic mo-
tion capture clips from quadrupedal animals. The training
is done in simulation, and the authors use a latent space
method to transfer the learned policies to the real robot.

In contrast to the previously discussed method, the latent
space here has explicit access to simulation physics param-
eters. A two-layer encoder compresses physics parameters
into a latent space during training. The encoder is regular-
ized with a loss term that minimizes the mutual information
between the simulation physics parameters and the latent
space. Equation (1) contains the full objective function that
the policy is trained with.

argmax
π,E

Eµ∼p(µ)Ez∼E(z|µ)Eτ∼p(τ |π,µ,z)

[
T−1∑
t=0

γtrt

]
− βEµ∼p(µ) [DKL[E(· | µ)‖ρ(·)]]

(1)

The benefit to this approach is that the amount of infor-
mation coming from the physics parameters can be continu-
ously tuned. When the hyperparameter β is zero, the policy
degenerates to a purely robust method. When β is high, the
policy may overfit to simulation parameters.

In the real world, the agent does not have access to
ground-truth physics parameters. When the policy is de-
ployed, a latent space is learned with Advantage Weighted
Regression, a sample-efficient off-policy RL algorithm [7].

3. Conclusion and Future Work
The method from [11] uses a small latent space to min-

imize overfitting to the simulation physics parameters. The
method in [6] avoids overfitting through a regularization
term in the objective function. I argue that the latter method
is more powerful because it allows a continuously-tunable
tradeoff between robustness and adaptability. Additionally,
the former method uses random search to find the latent
space, which is computationally inefficient for high dimen-
sional spaces. Therefore, the method in [11] may scale
poorly to more complex tasks.

The first method discussed from [2] limits observation
to 4D IMU data to prevent overfitting. However, this is
a crude way to regularize the policy, as researchers must
decide which parts of the state space to exclude and data
from the quadruped’s sensors goes unused. I propose us-
ing the information bottleneck from [6] on the observation
space. This allows robustness to be continuously tuned and
the policy to learn what to include and exclude.

Figure 2. Proposed robust policy architecture. The mutual infor-
mation constraint allows tunable robustness and enables the en-
coder to learn what to exclude or include.
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