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Introduction: Motivation

● Wheeled platforms are mostly limited to flat ground
● Legged embodiments can go anywhere humans may go
● This enables embodied intelligence to be applied in a much wider variety of situations

Lee, Joonho, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and 
Marco Hutter. "Learning quadrupedal locomotion over challenging 
terrain." Science robotics 5, no. 47 (2020).

https://news.mit.edu/2018/blind-cheetah-robot-climb-stairs-obs
tacles-disaster-zones-0705



Introduction

● Quadrupedal locomotion is a difficult controls problem
○ Requires expert knowledge of dynamics and task
○ Controllers may be brittle to gains, dynamics model, and contact conditions
○ Hybrid dynamics 

Kim, Donghyun, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. 
"Highly dynamic quadruped locomotion via whole-body impulse control and model 
predictive control." arXiv preprint arXiv:1909.06586 (2019).

Xin, Guiyang, Wouter Wolfslag, Hsiu-Chin Lin, Carlo Tiseo, and Michael Mistry. "An 
optimization-based locomotion controller for quadruped robots leveraging cartesian 
impedance control." Frontiers in Robotics and AI 7 (2020): 48.



Introduction

● Model-free reinforcement learning is a general way to automatically learn 
robot locomotion skills

○ Training a robot in simulation is desirable due to sample inefficiency of RL algorithms and 
dangers of training policies on real robot

Tan, Jie, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, 
Steven Bohez, and Vincent Vanhoucke. "Sim-to-real: Learning agile locomotion 
for quadruped robots." arXiv preprint arXiv:1804.10332 (2018).



Introduction
Many times in RL, the test environment is the training environment. 

Image source:https://syncedreview.com/2020/01/08/slm-lab-new-rl-research-benchmark-software-framework/



Introduction

In sim2real, the test environment is different from the training environment.

Train Test



Introduction
Formally, the task of quadrupedal locomotion can be represented as a Partially Observable Markov 
Decision Process (POMDP):  

The goal of reinforcement learning is to find the optimal policy π that maximums the discounted sum of rewards.

However, when transferring from sim2real, the POMDP changes unpredictably.



Introduction

Literature review will cover: 

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke.     
"Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018.

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy   
optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic 
locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).



Policies Modulating Trajectory Generators
Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies 
modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018. 



Key Ideas for sim2real transfer: Domain randomization and small observation space

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In 
Conference on Robot Learning, pp. 916-926. PMLR, 2018. 

Observation:
● IMU (pitch, roll, 

pitch velocity, roll 
velocity)

● Speed command

Reward:
● Track speed 

command

Action:
● Joint position targets

Environment

Literature Review: Policies Modulating Trajectory Generators



Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018. 

Akkaya, Ilge, Marcin Andrychowicz, Maciek Chociej, Mateusz 
Litwin, Bob McGrew, Arthur Petron, Alex Paino et al. "Solving 
rubik's cube with a robot hand." arXiv preprint arXiv:1910.07113 
(2019).

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy 
optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.

Literature Review: Policies Modulating Trajectory Generators



Literature Review: Policies Modulating Trajectory Generators

The learned policy transfers directly to the real world.

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018. 



The sim2real strategy relies on robustness of the policy

● Small observation space plus randomization prevents the policy from overfitting to training 
environment

● However, optimality is sacrificed for robustness

Figures from:
Tan, Jie, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent Vanhoucke. "Sim-to-real: Learning agile locomotion for quadruped robots." arXiv preprint arXiv:1804.10332 (2018).

Literature Review: Policies Modulating Trajectory Generators



Learning Fast Adaptation with Meta Strategy 
Optimization

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy 
optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.



Main idea

● Condition policy on a latent space which adapts to environment parameters.
● Collect samples from real robot to train latent space to adapt to real world.

Task: Forward locomotion
Observation: joint states, IMU
Action Space: joint positions
Reward: forward speed

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.

Literature Review: Learning Fast Adaptation with Meta Strategy Optimization



Literature Review: Learning fast adaptation with meta strategy optimization 

 …  

Create n environments with physics parameters μ1, μ2, …,μn

Policy Network 
(MLP)Observation

2D latent 
space

2D latent 
space

2D latent 
space

2D latent 
space

2D latent 
space

2D latent 
space

Repeat, creating new environments each 
iteration.

Policy Network 
(MLP)

2D latent 
space

2D latent 
space

2D latent 
space

2D latent 
space

2D latent 
space

Latent space and policy are trained with 
Augmented Random Search (ARS). Training 
process has no explicit knowledge of μ.



● Adaptation is successful with < 4000 samples gathered on real robot (about 75 seconds)
● Adapts to a wide range of tasks not encountered during training (walking up slope, weakened 

motor, wide randomization range)

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.

Literature Review: Learning Fast Adaptation with Meta Strategy Optimization



Drawbacks

● Samples must be collected on the real robot (no free lunch)
● Training on the real robot requires a motion capture system in order to obtain robot state to 

give rewards
● New samples must be collected whenever the environment changes

Yu, Wenhao, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. "Learning fast adaptation with meta strategy optimization." IEEE Robotics and Automation Letters 5, no. 2 (2020): 2950-2957.

Literature Review: Learning Fast Adaptation with Meta Strategy Optimization



Learning Agile Robot Locomotion Skills by 
Imitating Animals

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic 
locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).



Task: Imitate motion capture clips from animals

Observation: previous action, robot joint states, goal joint states

Action Space: joint positions

Reward: track reference trajectory

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).

Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals



Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals

The pipeline consists of three steps:

1) Motion Targeting

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).

Mocap Keypoint mapping

2) Motion Imitation
● Robot is trained to imitate the reference behavior in a PyBullet simulation

3) Domain Adaptation via a latent space method



Training

● Latent space is sampled from stochastic encoder, which has access to simulation physics 
parameters (μ)  

● Trained with Proximal Policy Optimization (PPO)
● Uses information bottleneck loss term

Testing

● Latent space is learned via Advantage Weighted Regression (AWR) through collecting samples on 
the real robot

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. "Learning agile robotic locomotion skills by imitating animals." arXiv preprint arXiv:2004.00784 (2020).

Policy Network Architecture
Policy Network Optimization Problem (Next Slide)

Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals



Discounted sum 
of rewards

Information bottleneck (IB) term, derived from 
minimizing mutual information between μ and z. 
(Appendix)

Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals



Literature Review: Learning Agile Robotic Locomotion Skills by Imitating Animals

Drawbacks

● This approach is not able to learn a general controller for the quadruped 
● Collecting mocap data from animals is not a scalable data collection pipeline

○ Adding artist-generated animations to the dataset is perhaps evidence of this



● Policies Modulating Trajectory Generators (Method A) primarily relies on robustness, which is 

desirable for its simplicity and works when the sim2real gap is small. 

○ Requires no real robot training. 

○ Potentially sacrifices performance.

● Learning Agile Robotic Locomotion Skills by Imitating Animals (Method C) is the most powerful 

formulation, since it enables a continuously-tunable tradeoff between robustness and adaptability via 

the hyperparameter β. 

○ Learning Fast with Meta Strategy Optimization (Method B) controls this tradeoff through the 

size of the latent space. However, increasing the latent space size greatly increases required 

computation, since the latent space is found through random search. 

○ Method C therefore scales better to more complex tasks with larger sim2real gaps.

Conclusion: Comparison



● Pass observations through an information bottleneck to improve generalization performance
● Instead of limiting the observation space to only IMU data like Method A, learn what to 

exclude
● Continuously tune the amount of exclusion
● This method is more general

Conclusion: Potential Future Work

Observations

Impose mutual 
information 
restriction

FC 
layersEncoder

Latent space Actions



Appendix



Appendix: Derivation of Stochastic Encoder Regularizing loss term from Mutual 
Information Constraint



Appendix: Derivation of Stochastic Encoder Regularizing loss term from Mutual 
Information Constraint

Back

Reference: Alemi, Alexander A., Ian Fischer, Joshua V. Dillon, and Kevin Murphy. "Deep variational information bottleneck." arXiv preprint arXiv:1612.00410 (2016).



Appendix: Advantage Weighted Regression

● Off-policy algorithm

Peng, Xue Bin, Aviral Kumar, Grace Zhang, and Sergey Levine. "Advantage-weighted regression: Simple and scalable off-policy reinforcement learning." 
arXiv preprint arXiv:1910.00177 (2019). (https://arxiv.org/pdf/1910.00177.pdf)



Mania, Horia, Aurelia Guy, and Benjamin Recht. "Simple random search provides a competitive approach to reinforcement learning." arXiv preprint arXiv:1803.07055 (2018). (https://arxiv.org/pdf/1803.07055.pdf)

Appendix: Augmented Random Search



Appendix: Proximal Policy Optimization

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017). (https://arxiv.org/pdf/1707.06347.pdf)



Appendix: Vanilla Policy Gradient

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html



Appendix: Policies Modulating Trajectory Generators

https://docs.google.com/file/d/1o5RFMGzjb7b4lgJqsvv7f7I5PQhhCdER/preview


Main Idea: Learning from scratch is time consuming and hard, use prior knowledge in the form of a 
trajectory (i.e. gait) generator

Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 
916-926. PMLR, 2018. 

Inputs
● Frequency
● Step length
● Base height

Output
● Open-loop gait pattern

Appendix: Policies Modulating Trajectory Generators



Iscen, Atil, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent Vanhoucke. "Policies modulating trajectory generators." In Conference on Robot Learning, pp. 916-926. PMLR, 2018. 

Appendix: Policies Modulating Trajectory Generators


